

VIII.71.

,

.

VIII.71.1.

. .- . .

VIII.71.1.5.

(

олпись, Дата

_

:

)

СПИСОК ИСПОЛНИТЕЛЕЙ

Руководитель темы	Amo	
д.гм.н., дир.	подпись, дата	А.А. Цыганков (введение, раздел
	26.11. 20157.	1, заключение, общая редакция)
Исполнители темы:		
д.гм.н., в.н.с (0.2)	1 Det 26.11, 15	Дорошкевич А.Г. (раздел 2)
	подпись, дата	
д.гм.н., в.н.с (0.3)	D1. 26.11.15	Д.И. Царев (раздел 3)
	подпись, дата	
к.гм.н., зав. лаб.	1k- 26,11.2015	С.В. Канакин (раздел 4)
	подпись, дата	
К.ГМ.Н., В.Н.С.	h 96.11. 2016	Г.С. Рипп (раздел 2)
	подпись, дата	
к.гм.н., уч. сек.	starf 126. 11. 2015	Т.Н. Анциферова (раздел 1.2)
	подпись, дата	
К.ГМ.Н., С.Н.С.	Stepye - 26.11.15	Т.Т. Врублевская (раздел 1)
	подпись, дата	
к.гм.н., с.н.с.	Left 26.11.15	И.А. Избродин (раздел 2)
	подпись, дата	
К.ГМ.Н., Н.С.	My6h 26.11.B	В.Б. Хубанов (раздел 4)
	подпись, дата	
К.ГМ.Н., Н.С.	Law 26.11.15.	Л.Б. Дамдинова (раздел 3)
	подпись, дата	
К.ГМ.Н., Н.С.	at 26.11.15	Е.И. Ласточкин (раздел 2)
	подпись, дата	
К.ГМ.Н., Н.С.	Alpent 260.15	М.О. Рампилов (раздел 2)
	подпись, дата	
К.ГМ.Н., М.Н.С.	Bet 271115	Г.Н. Бурмакина (раздел 1)
	подпись, дата	
К.ГМ.Н., М.Н.С.	Jul 26 11, 45	М.В. Рампилова
	подпись, дата	
К.ГМ.Н., М.Н.С.	Aroff 26.11.15	Д.Ц. Аюржанаева
	поднись, дата	
М.Н.С.	Damp 26.11.15	А.А. Батуева
	подпись, дата	
C.H.C.	Jest- 26.11.15	В.Ф. Посохов (раздел 2)
	подпись, дата	
M.H.C	The 26.11.15	Б.Ц. Цыренов (раздел 1)
	подпись, дата	
инж. 1 категории	52 - alb. 11.15	Н.Н. Егорова (подготовка иллю-
	подпись, дата	страций)
инж. 1 категории	R 26.11.15	К.В.Непомнящих (раздел 4)
	подпись, дата	
инж. 2 категории	Cogge 26.11.15	Е.Е. Дугданова (подготовка ил-
	подпись, дата	люстрации)
вед. инж.	Juces 26.11.15	В.Л. Посохова (графическая об-
	подпись, дата	раоотка изотопных данных)
инж. 2 категории	an 261115	Е.В. ходырева (определение со-
	подпись, дата	става минералов)
инж.	aug 26. 11.15	А.М. Хуоанова
	подпись, дата	

вед. инж.	Aller 264 pair	В.А. Тюгашев
ИНЖ 1 категории	подпись, дата	
пиж. т категории	11 183° 26.1115.	Е.А. Хромова (эл. микроскопи-
вед. инж.	подпись, дата	ческие исследования)
	<u>1900526.11.15</u>	Е.Д. Утина (пробоподготовка)
инж. 2 категории	Подпись, дата	
		Н.А. Арефьева (пробоподготов-
инж. 2 категории	nominos, dala	ка)
1	HOULING HOTO	М.Д. Буянтуев
аспирант, (лаб. 0.5)	Bold 27 Mut	
1 , (, , , , , , , , , , , , , , , , ,	<u>IOUTHOR</u> TOTO	Замбалов В.П. (1 раздел)
студ., (лаб. 0.5)	nodinos, dara	-
		Извекова А.Д (2 раздел)
	подпись, дата	

УДК 552.2 550

Ключевые слова: научный отчет, магматическая петрология, щелочные граниты, изотопная геохимия, абсолютный возраст, редкометалльные месторождения, масс-спектрометрия, Саяно-Байкальская складчатая область 26 ., 16 , 1 ., 1 .

Sr, Nd)

LA-ICP-MS

	7
1.	0
,	9
2 : , -	15
,	
3	10
, -	18
4. LA-ICP-MS : ,	23
	26
	27
	28

,

(7.32-2001).

_

A/CNK – $Al_2O_3/(CaO+Na_2O+K_2O)$, . Ap -Bt-

Ep-

 $f \mbox{ $\#$ FeO}^{tot.}/(Feo^{tot.} + MgO), \qquad . \label{eq:feo}$

_

HFSE -

_

Ilm -

Kfs –

LA-ICP-MS –

LILE –

-

_

, _ .

, , , , , _

, - -, . -, , , ,

, « ». -

- . , 280 . , , 120

.

,

() _____, ____

· - - , - , - , - , , - , - , - , , - , - , , - ,

- (, -

.%

%

1.

(4)

; 6 -

; 5 –

(

; 9 –

.) –

80 -

),

)

: 2

:

:

(3)

); 7-

(),

: -; 11 –

-

(?)

();8-

MILLION DE

TY'I'

SiO2, Mac. %

Zr, Nb, Ce, Y Ga (4).

(5)

M-I-S

4.

3.

(

)

(LILE)

5.)

(

(HFSE)

(

(

)

6. (‰, SMOW)	,	, -
			-
			-
. Zrn –	; Qtz -	_	; Ttn – –
; Kfs –			. I –
			-
	(-
		-); II –
			-

U-Pb

SHRIMP-RG

(-).

REE 7,

SHRIMP

8.

7.

8.

_

., 2010].

,

LA-ICP-MS

SHRIMP

9.

(

REE

)

[

14

,

(

280 210

2.

(

).

(

10).

Скарны	Sil'			500 °C
	Cal	<u>}−−++−+₩₩−₩</u>		200 "C
прожилки кварца в гранитах	Q	H		400 °C
Рудный этап	Sil ²	 - - - - 	1001 100	050.80
	Dol		Magmatic water	250 C
	Cal		a and a second	200 "C
Пострудный этап	Cal	1		150 °C
		14-12-10 -8 -6 -4 -2 0 2 4	6 8 1	0 12

4 -12 -10 -8 -6 -4 -2 0 2 4 6 8 10 1 δ¹⁸O,‰ SMOW(fluid) 10.

 $\begin{array}{cccc} (\mathrm{Sil}^1 & \mathrm{Sil}^2 - & - \\ & & , \ \mathrm{Dol} \ - \\ \mathrm{Cal} & - &). \end{array}$

(11).

•

11.

¹⁸O

13

),

).

-, 1. ,

- () Linkam THMSG600 . (+ +) . -, +130 +320°, . -2.5 -7.8° , 4.1 11.46 .%

(. NaCl). -30 -34.5 ° . , FLINCORE, 5-77 . LA-ICP-MS

,

ICP-MS NexION NWR-213 (, .). - : Li, Be, Na, Mg, Al, Si, Cl, K,

Mn, Fe, Cu, Zn, Nb, Mo, Ag, Sn, W, Pb (. 1).

•

3.

LA-ICP-MS,

LA-ICP-MS,

(J) (k), NIST-610, J, • J J (J= J – J). () Ca, Na 1, 13). (- •

Ca

,

,

,

,

– Na, K Mg

,

(

,

)

,

_

Na (. %).

Na ppm.

1.

LA-ICP-MS.

,

_								
	Ep5 1	Ep5 2	Ep5 3a	Ep5 5	Ep2 1	Ep2 2	Ep 5a 1	Ep 5a 2a
Li	2,95	16,09	2,18	11,63	2,98	12,42	7,80	2,21
Be	863,14	16,78	0,19	17,87	0,37		2,66	
Na	29451,87	31569,38	27957,68	28725,00	27212,00	30178,00	29900,00	37920,38
Mg	97,80	105,95	3,12	89,49	6,14	84,46	8,58	30,37
Al	20,30	152,14	0,28	11,47		31,18	8,31	2,05
Si	16499,31		187,26	4423,62	246,85		1290,57	314,22
Cl	59208,51	37729,85	36530,09	43952,44	35053,24	41361,11	41969,50	14489,02
K	8541,89	6600,16	10268,63	9345,15	11060,24	7975,08	9864,99	3318,49
Mn	1516,63	21,87	0,38	4,13	0,95	6,01	1,12	0,23
Fe			7,05	43,08	26,84			15,73
Cu	6,66		2,07	87,91	0,87	9,91	3,33	0,25
Zn		19,55	0,03		2,73	224,57	1,96	
Nb	0,98			9,68	0,00		0,43	0,13
Мо				4,61				
Ag	1,41		0,88					0,26
Sn	0,63	7,27			0,15	3,45		
W	38,10	101,35	9,91	387,43	30,17	158,83	12,53	5,82
Au			0,09					
Pb	1,82	7,62	0,03	3,51	1,07	9,78		0,62
	:	_	1	J <u></u>	•	J	I	1

Na

NIST 610

•

,

						-
,	50-60 . %		0.2-2.5	. % BeO.		
-	,			-		-
,			,	,		
						,
	,				,	-
,				,	,	
	-		-			
-	,					
-						_
	(50-60 .%).				:	_
	(20 00 1/0),	-				
	,			·		
				,		_
	10 15 %		•			
	10 15 . 70.					-
	,			,		-
•		E-O	Ma	,	M	
		FeO	MnO,		Mg,	
	,	.	22.09	. % FeO.		-
	SrO 0.69	.%.				
		Kfs				
Kfs 8	10 .%.				,	-
	,	•				Kfs,
,	,					
	Kfs					
	•				Kfs	-
BaO.		BaO	10	0.42 .%,		-
	,	Na	₂ O (2.33%),	, Ca (1.25%)	SrO (1.37%).	-
			,			_

-

_

_

_

•

3-5%.

21

,

Fe.

•

,

		FeO (33 – 38	.%)		MgO.	SiO_2	ZrO_2
			,				Al_2O_3
FeO.			Yb ₂ O ₃ (4%),	Y ₂ O ₃ (6%), T	$hO_2(3\%), P_2O_5($	6%).	
					,		
(6%)			7	Ti.			
			,				
	, ,	,					
						,	-
							-
		,				-	-
		•					
					,		
-					-		
	,					•	
		(40, c0, 0/)				,	-
,		(40-60 .%).					
,	,	, ,	,	, .			-
	,	, ()			,	, -
,	,	15). %				
		15	.,0,				•
	FeO), MnO, MgO	SrO.		7		
	(10	. %)			,		
	•		(8-10).%)			,
			-			Kfs	-
		Kfs		BaO (0.6'	7 %).		
	(5-10) .%)		Kfs	,		
	•			,			
				FeO (0.32 %)	K ₂ (0.34 %).		
				,]	Kfs,	3-5	. % -
	,	,					

, .

, ,

,

•

FeO (14.76–21.41 . %), TiO₂ (2.15 .%) F (5.24 .%).

.

, - , , , . - , , . . -

, ; -(); -, , , -. -, , , ,

(), -- .

,

UP-213

,

:

4. LA-ICP-MS

- Element XR LA-ICP-MS

,

GJ-1 [Jackson et al., 2004], Plešovice [Sláma et al.,

,

LA-ICP-MS

16

•

» 1. () () 260 - 250_ 280 210 2. (,, S, Sr, Nd,)F-Be () « » 3. XVIII F-Be 4. _ (4-12 % . NaCl) F Ca, _ 2 ICP-MS : Li, Be, Na, Mg, Al, Si, Cl, K, Mn, Fe, Cu, Zn, Nb, Mo, Ag, Sn, W, Au, Pb. 16.78 / . 0.19 5. _ _ Element XR UP-213 LA-ICP-MS ,

VIII.71.1.5. «

(U-Pb))//

••

Litvinovsky B.A., Jahn B.M., Eyal M. Mantle-derived sources of syenites from the A-type igneous suites – New approach to the provenance of alkaline silicic magmas // Lithos, 2015, v. 232, pp. 242-265.

:

, 2014, . 55,

2, .197-227.

Litvinovsky B.A., Tsygankov A.A., Jahn B.M., Katzir Y., Be'eri-Shlevin Y. Origin and evolution of overlapping calc-alkaline and alkaline magmas: The Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia) // Lithos, 2011, v. 125, pp. 845–874.

//

Jackson S. E., Pearson N. J., Griffin W. L., Belousova, E. A. The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U–Pb zircon geochronology // Chemical Geology, 2004, v. 211, pp. 47-69.

Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A., Nasdala L., Norberg N., Schaltegger U., Schoene B., Tubrett M.N., Whitehouse M.J. Plesovice zircon - A new natural reference material for U-Pb and Hf isotopic microanalysis // Chemical Geology, 2008, v. 249, pp. 1-35.

Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Mundil R., Campbell I.H., Korsch R.J., Williams I.S., Foudoulis C. Improved ²⁰⁶Pb/²³⁸U microprobe geochronology by the monitoring of a trace-element-related matrix effect; SHRIMP, ID-TIMS, ELA-ICP-MS and oxygen isotope documentation for a series of zircon standards // Chemical Geology, 2004, v. 205, pp. 115-140.

Frei D., Gerdes A. Precise and accurate in situ U–Pb dating of zircon with high sample throughput by automated LA-SF-ICP-MS // Chemical Geology, 2009, v. 261, pp. 261–270.

2015

,

Web of

Science, Scopus, : . . // , 2015, . 460, 3, . 324. : // , 2015, . 56, 3, .516-527. : _) // , 2015, (4, . 386-409. . 23, • •• •• , 2015, .) // (6, .1-12. 57, () // , 2015, . 50, 1, . 5-14. // , 2015, . 8, 4, . 90-93. //

2015, . 23, 5, . 490-520.

Tsydenova N., Morozov M.V., **Rampilova M.V.**, Vasil'ev Y.A., Matveeva O.P., Konovalov P.B. Chemical and spectroscopic study of nephrite artifacts from Transbaikalia, Russia: Geological sources and possible transportation routes // Quaternary International, 2015, v. 355, 12, .114–125.