Федеральное агентство научных организаций

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ ГЕОЛОГИ-ЧЕСКИЙ ИНСТИТУТ СИБИРСКОГО ОТДЕЛЕНИЯ РОССИЙСКОЙ АКАДЕМИИ НАУК (ГИН СО РАН)

УДК 550.461 ВКГ ОКП № госрегистрации 01201282373

УТВЕРЖДЕНО
РЕШЕНТЕМ УЧЕНОГО СОВЕТА
Протоков до 4 от 21.11.2014
Продосматель ученого совета
А.А. Цыганков
2014 г

ОТЧЕТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

<u>Приоритетное направление VIII.79.</u> Эволюция окружающей среды и климата под воздействием природных и антропогенных факторов, научные основы рационального природопользования и устойчивого развития; территориальная организация хозяйства и общества

<u>Программа VIII.79.1.</u> Динамика биокосных систем Центральной Азии в условиях изменения климата и техногенного давления

по теме

<u>Проект VIII.79.1.4.</u> Эволюция природно-техногенных систем Забайкалья и разработка основ безопасного хранения отходов горнодобывающего производства. №01201282373. 2013-2016 гг. (промежуточный)

Руководитель проекта, д.г-м.н.

Ullion

А.М. Плюснин (подпись, дата)

Список исполнителей

	100	
Руководитель проекта, зав. лаб.	, д.г-м.н. <i>Шкосед 20, 11.2014</i> А.М. Плюсни	Н
	(подпись, дата)	
Исполнители темы:	в.н.с., д.г-м.н. <i>Висаев</i> — 30,113011 В.П. Исаев	100
	(подпись, дата)	
	в.н.с., к.х.н. <u>Э. Закасег 20.11.19</u> Л. Зонхоева	•
	(поднись, дата)	
	с.н.с., к.б.н. (Дор 20.11.20, С.Г. Дорошкев	зич
	(подпись, дата)	
	с.н.с., к.ф-м.н <u>ЗХем 20.11. 2014</u> Хажеева З.И.	1.
	(додпись, дата)	
	с.н.с., к. г-м.н. (20,11,2019 Смирнова О.Ь	ζ.
	подпись, дата)	
	н.с., к.г.н. <u>1011 1014</u> Перязева Е.Г	•
	(подпись, дата)	
·** .	н.с., к.г.н. <u>2011. 2014г.</u> Чернявский М	1.K.
	(подпись, дата)	
	м.н.с., к.х.н. <i>Сом Во. 1/. 25/9</i> Санжанова С	.C
*	(додпись, дата)	
*	м.н.с., к. г-м.н Малу 20.1/1 Жамбалова Д	[.И
	(подпись, дата)	
	вед. инж. <u>Биру</u> 20.11-2014 Бардамова 1	И.В.
	(подпись, дата)	
	инж. 2 кат. Т. Минивер Иринчеева А	4.И
	(подпись, дата) 20. 14. 142.	
	инж. 2 кат. Ойк ерей до и Онходоева Ј	П.A.
	(подпись, дата)	
	инж-лаб. <i>Дору - 20.11. 2014</i> Доржиева Н.	Д.
	(подпись, дата)	
	ст.лаб. <i>20.11.14</i> Кушеева Е.С.	
	(подпись, дата)	
	лаб. 18. 14. 14 Калашников (C.Г.
	(подпись, дата)	
	лаб. 20.(1,14 Украинцев А.)	B.
	(подпись, дата)	
	лаб. Дец 20-11.14 Дабаева В.В.	
	(подпись, дата)	

Реферат

Отчет имеет объем 13 страниц, в том числе 6 рисунков, 3 таблицы. Список опубликованной литературы включает в себя 2 монографии; 1патент; 7 статей в журналах, включенных в базу данных Web of Science, Scopus, РИНЦ; 7 статей в сборниках, включенных в базу данных РИНЦ; 14 статей в сборниках материалов конференций.

Ключевые слова: хвостохранилище, кислая среда, нейтрализация поровых вод, известняк, геохимическая ассоциация, техногенные ландшафты, система почва-растение.

Цель работы: решение научных проблем безопасного хранения отходов горнодобывающего производства на основе регулирования процессов, протекающих в толще техногенных песков, и использовании их для консервации токсичных химических элементов и соединений.

Метод исследования: экспериментальное моделирование процессов протекающих в толще песков хвостохранилища, наблюдения на природных объектах.

Результаты работы: Экспериментально обосновано, что решение проблемы безопасного хранения отходов горнодобывающей промышленности может быть связано с переводом сульфидных форм нахождения химических элементов в хвостохранилище в карбонатные. В качестве реагента, нейтрализующего и высаживающего растворенные формы токсичных элементов, наиболее эффективен известняк, который необходимо вносить в виде добавки в толщу песков хвостохранилища или формировать из него проницаемые для воды слои с размером частиц 2-5 мм.

Установлено, что геохимический спектр почв техногенных ландшафтов Джидинского ГОКа и Бом-Горхонского сульфидно-гюбнеритового месторождения отличается от фоновых территорий повышением роли в составе ассоциации элементов - серы и фтора, содержание которых превышает петрогенные элементы - фосфор и марганец.

Проведенные агрохимические исследования с использованием отходов переработки руд Джидинского вольфрамово-молибденового комбината показали, что применение отходов горнообогатительного производства в качестве нетрадиционного удобрения в дозах от $Mo_{0,05}$ до $Mo_{10,0}$ позволяет получить зеленую массу гороха с экологически безопасным уровнем (значительно уступающим максимально допустимому уровню (МДУ) накопления тяжелых металлов.

Результаты исследований могут быть применены на действующих и проектируемых горнообогатительных предприятиях. Предлагаемый способ хранения отходов горно-обогатительного производства понизит экологическую напряженность на территории размещения хвостов переработки, так как токсичные элементы не будут мигрировать за их пределы.

Содержание

Введение	4 стр.
Основные результаты	4 стр.
Заключение	11 стр.
Список использованных источников	11 стр.
Приложение А	11 стр.

Нормативные ссылки

В настоящем отчете о НИР использованы ссылки на следующие стандарты:

ГОСТ 7.32-2001 Система стандартов по информации, библиотечному и издательскому делу ГОСТ 17.1.3.06-82 Охрана природы. Гидросфера. Общие требования к охране подземных вод.

ГОСТ 17.4.3.04-85 Охрана природы, почвы. Общие требования к контролю и охране от загрязнения.

ГОСТ 17.4.4.02-84 Охрана природы. Почвы. Методы отбора и подготовки проб для химического, бактериологического, гельминтологического анализа.

Определения

Хвостохранилище — комплекс специальных сооружений и оборудования, предназначенный для хранения или захоронения радиоактивных, токсичных и других отвальных отходов обогащения полезных ископаемых, именуемых хвостами.

Обозначения и сокращения

МДУ – максимально допустимый уровень ОГОП - отходы горно-обогатительного производства

Введение

Научно-исследовательские работы по проекту проведены в соответствии с заданием на 2014 г: Исследование нейтрализующих, фильтрующих и сорбционных свойств природных и техногенных материалов. Изучение особенностей биогеохимического круговорота токсичных элементов в пограничных зонах природных и техногенных ландшафтов; эколого-агрохимическая оценка использования отходов горно-обогатительного производства Джидинского, Бом-Горхонского вольфрамо-молибденовых месторождений. При выполнении научно-исследовательских работ и подготовке отчета руководствовались государственными стандартами: ГОСТ 17.1.3.06-82; ГОСТ 17.4.4.02-84; ГОСТ 17.4.3.04-85; ГОСТ 7.32-2001.

Основные результаты

1. Нейтрализация поровых вод приводит к резкому ограничению миграционной способности многих химических элементов в толще хранилищ отходов горно-обогатительных комбинатов и снижению экологической напряженности на окружающей территории. В качестве нейтрализующего реагента наиболее эффективен известняк, который необходимо

вносить в виде добавки в толщу песков или формировать из него проницаемые для вод слои с размером частиц 2-5 мм.

Для устранения экологических проблем, связанных с хвостохранилищем необходимо связать растворенное вещество в нерастворимых в экзогенных условиях соединениях, ограничив расстояние миграции токсичных элементов толщей техногенных песков. Нами экспериментально исследовалась миграционная способность растворенных форм микроэлементов в толще песков. Так как подвижность многих элементов зависит от рН среды, исследовалось влияние этого фактора. В качестве реагентов использовали кальцит, доломит, магнезит, цеолит, глину, вулканический шлак и др.

Нейтрализующий реагент помещался в хвостах переработки двумя способами: в виде слоя внизу колонки и равномерно распределялся по толще песков. Количество реагента составляло 2-3% от массы песков. В результате проведенных экспериментов установлено, что наиболее активно реакция среды менялась при добавлении в пески известняка, при соотношении реагент-песок равным 1:50 рН фильтрующихся растворов изменялся в пределах 2,68-6,5. При добавлении доломита в пропорции 1:50 рН возрастает с 2,62 до 4,81 (Рисунок 1).

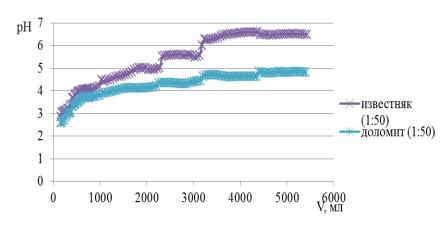


Рисунок 1 - Изменение рН растворов фильтрующихся через колонки, заполненные техногенным песком с примесью известняка (1:50) и доломита (1:50) распределенных по всему объему колонок.

На рисунке 2 приведены графики нейтрализации кислоты известняком при его размещении внизу колонки в виде слоя и при распределении по всей толще песков. Из представленных графиков видно, что при смешивании песка с известняком, нейтрализация песка происходит более интенсивно, нежели слоем.

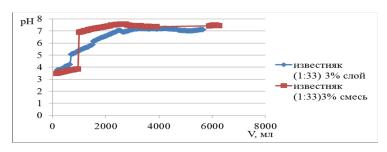


Рисунок 2 - Нейтрализация фильтрующихся через колонки растворов с добавками известняка, находящегося в виде слоя внизу колонки и рассеянного по всей толще песков.

От pH растворов резко зависит миграционная способность многих химических элементов, находящихся в поровых водах. В фильтратах, пропускаемых через колонки, заполненные песком с различными добавками, установлены концентрации химических элементов различающиеся на математические порядки (таблица 1).

Таблица - 1 Содержания химических элементов в растворах, фильтрующихся через колонки, заполненные техногенным песком с добавками известняка и др. реагентов, мкг/дм³

№ п/п	1	2	3	4	5	6	7	8	9
Cu	6035	575	70,5	14,0	2,8	2,0	8,4	2,1	6,7
Zn	45600	4440	210	24,6	26	149	2020	5,3	94,5
Pb	230	122	87,5	34,0	<25,0	<25,0	<25,0	<25,0	<25,0
Cd	490	45	3,0	4,0	<1,0	2,8	21,7	<1,0	<1,0
Fe	33840	21430	7580	457	93,6	73	62,5	78,3	58,7
Mn	9330	900	54,4	300	54,3	147	4720	58,7	860
Ni	1045	100	5,7	20	<5,0	7,3	213,0	<5,0	21
Co	1715	190	20,1	17,7	<5,0	6,2	72,4	<5,0	<5,0
Cr	110	16,8	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0	<5,0
Al	34785	4760	2280	39,3	19,3	44,3	3440	71	601
Si	91180	12560	6850	12190	23360	11750	20400	16230	6920
Li	1550	34,8	16,5	45,5	6,8	10,7	36,9	16,8	40,7
Sr	620	590	450	480	350	420	426	1140	887
Ba	26,7	22,5	21,2	20,7	19	52,5	34,5	30	87,8
Ве	130	2,1	0,9	<0,2	<0,2	0,2	2,5	1,3	0,9

Примечание: в столбцах 1-3 приведен химический состав растворов фильтрующиеся через колонки, заполненные только песком, а с 4 по 9 – с примесью известняка. Измеренное значение pH растворов в колонках: 1-3,05; 2-3,47; 3-3,91; 4-6,60; 5-6,96; 6-7,02; 7-6,42; 8-7,44; 9-7,45. Состав смеси и форма заложения добавки: 4- песок +известняк 3%, слой; 5- песок +известняк 3%, смесь; 6- песок +известняк 3%+ слой цеолита с примесью известняка 3 %; 7- песок +известняк 3%+ слой глины с примесью известняка 3 %; 8- песок +известняк 3%+ слой цеолита с примесью известняка 3 %.

Проблема безопасного хранения отходов горнодобывающей промышленности может быть решена путем перевода сульфидных и сульфатных форм нахождения химических элементов в хвостохранилище в карбонатные. Для запуска процесса необходимо внести в толщу хвостов переработки карбонатные породы (известняк, доломит, магнезит и др.). Наиболее эффективное ограничение миграции токсичных элементов в растворе можно создать, равномерно распределяя карбонатную фазу в толще песков (Рисунок 3А). В этом случае сульфидные минералы будут находиться рядом с частицами карбонатов, продукты их окисления из растворов будут переводиться в карбонатные и др. трудно растворимые минералы на коротком пути миграции. Образующиеся нерастворимые в экзогенных условиях соединения будут заполнять поровое пространство в толще песков. Карбонаты для нейтрализации растворов, в этом случае необходимо будет вносить на обогатительной фабрике, на стадии дробления или грохочения пород, в количестве необходимом для связывания продуктов разложения остатка рудной минерализации. Может дать положительный эффект в ограничении миграции токсичных элементов применение хорошо проницаемых горизонтов карбонатов в толще песков. Такие прослои карбонатов будут дренировать поровые воды из вышележащих горизонтов песков и высаживать токсичные элементы в виде нерастворимых соединений в своем поровом пространстве (рисунок 3Б).

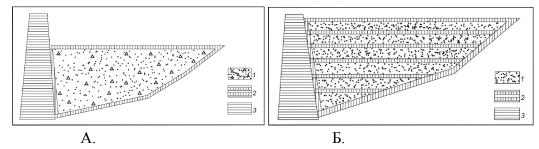


Рисунок 3 - Схема хвостохранилища с равномерным распределением карбонатов (A) и расположением их в виде слоев (Б). Условные обозначения: (A): 1 – техногенные пески с карбонатами, 2 – карбонаты, 3 – дамба. (Б): 1 – техногенные пески, 2 – карбонаты, 3 - дамба.

2. Техногенные ландшафты сульфидно-вольфрамовых месторождений характеризуются появлением в составе геохимической ассоциации серы и фтора, содержание которых превышает количество таких петрогенных элементов как фосфор и марганец. Высокое содержание серы и фтора, а также ряда тяжелых металлов в почвах пойменных ландшафтов свидетельствует о процессах миграции этих элементов из прилегающих техногенных образований.

Изучено распределение химических элементов в природных и техногенных ландшафтах в пределах горных отводов сульфидно-вольфрамовых месторождений (законсервированное Джидинское и ныне действующее Бом-Горхонское).

На участках Джидинского и Бом-Горхонского месторождений и прилегающих к ним территориях выделено три типа ландшафтов: горный таежный, пойменный и техногенный. Для горнотаежного ландшафта характерен эрозионно-денудационный рельеф, а для пойменного и техногенного — эрозионно-аккумулятивный. Горно-таежный ландшафт преобладает. Коренные породы, составляющие литогенную основу ландшафтов, представлены разнообразными гранитоидами — от кварцевых диоритов до лейкократовых гранитов, почвообразующие рыхлые породы - элювиальными и делювиальными образованиями.

Фитоценоз природного горно-таежного ландшафта Джидинского рудного узла включает кедр, лиственницу, ель, березу с травяно-моховым и травяно-брусничным с рододендроном даурским покровом. Почвы – горные дерново-таежные, дерново-лесные глубокопромерзающие.

Пойменный ландшафт Джидинского рудного узла развит в поймах рек Модонкуль, Инкур и ручьев Барун-Нарын, Зун-Нарын, выполненных аллювиальными отложениями. Растительность — лугово-тальниковая на аллювиальных луговых и осоково-полевицево-тальниковая на аллювиальных болотных перегнойно-глеевых глубокопромерзающих почвах.

Техногенный ландшафт Джидинского месторождения представлен массивами хранилищ отходов переработки сульфидно-гюбнеритовых руд.

Растительность горно-таежного ландшафта Бом-Горхонского месторождения представлена лиственницей, сосной, березой, ольхой по травяно-моховому покрову и травяно-брусничному с рододендроном даурским нагорных дерново-таежных почвах.

Пойменный ландшафт Бом-Горхонского месторождения включает поймы ручьев Бом-Горхон и Зун-Тигня. Представлен тремя типами почв: по пойме р.Зун-Тигня – аллювиальные дерново-глеевые (реже аллювиальные дерново-перегнойно-глеевые); по пойме р. Бом-Горхон – аллювиальные дерново-перегнойно-глеевые, болотные переходные торфянисто-глеевые (по левому

борту, в районе впадения руч. Четвертый Ключ). Растительность: ива, ерник по травяно-осоковомоховому и травяно-моховому покрову.

Техногенный ландшафт Бом-Горхонского месторождения представлен массивами хвостохранилищ, карьерами.

Геохимический спектр почв техногенных ландшафтов рассмотренных месторождений отличается появлением в составе ассоциации серы и фтора, содержание которых превышает содержание таких петрогенных элементов как фосфор и марганец (таблица 2). Высокое содержание серы и фтора, а также ряда тяжелых металлов в почвах пойменных ландшафтов свидетельствует о процессах миграции этих элементов из прилегающих техногенных образований.

Таблица - 2 Геохимический спектр химических элементов 0-20 см слоя почв природных и техногенных ландшафтов в пределах горных отводов сульфидно-вольфрамовых месторождений (жирным выделены петрогенные элементы).

	тетрогенные элементы,						
Тип ландшафта		Ассоциация химических элементов					
	1	Джидинский рудный узел					
Горно-таежный	Природный	Si>Al>Fe>Na>K>Ca>Mg>Ti>Mn>P>Ba>Sr>Zr>V>Rb>Cr>Zn>Cu>					
		Ce>Ni>Y>La=Pb>Co>Nd>Nb>Cs>Mo=Sn=Sb					
Пойменный	природный	Si>Al>Fe>Ca>Na>K>Mg>Ti>P>Mn>Zn>Ba>Sr>Zr>Cu>Rb>V>Cr>					
	р. Модонкуль	Ni>Ce>Pb>Y>Cd>Co>La>Nd>Nb>Cs>Mo>Sn=Sb					
	Зона влияния техно-	Si>Al>Fe>Ca>Na>K>Mg>S>Ti>P>Mn>F>Ba>Sr>Zr>Cr>V>Ni>Rb>					
	генного ландшафта	Ce=Zn>Cu>Y>La>Pb>Co>Cs>Sb>Bi					
	руч. Зун-Нарын						
	Зона влияния техно-	Si>Al>Ca>Fe>Mg>Mn>K>P>S>Na>Ti>Ba>Sr>Zr>Zn>Pb>Rb>Ce>					
	генного ландшафта	Cu>Y>V>Co>La>Ni>Cr=Mo>As>Nb>Sb>Sn>Bi					
	р. Барун-Нарын						
Техногенный	Хвостохранилище ле-	Si>Al>K>Fe>Ca>Mg>Na>S>Ti>Mn>F>Zn>W>Rb>Pb>P>Ba>V>Cu					
	жалых отходов перера-	>Sr>Cs>Cr>Zr>As>Bi>Ni>Mo>Ce>Sn>Y>Co>Ag>Sb>La>Nb>Cd					
	ботки руд	-					
	Бом	-Горхонское месторождение					
Горно-таежный	природный	Si>Al>K>Fe>Na>Ca>Mg>Ti>Mn>P>Ba>W>Sr>Zr>Rb>Bi>					
		Zn>Ce>Sn>V>La>Cr>Cu>Nd>Ni>Cs>Mo>Nb>Co>Y>Ag>Cd					
Пойменный	Намытые техногенные	Si>Al>K>Fe>Na>Ca>Mg>Ti>F>S>Mn>P>W>Ba>Zn>Sr>Zr>Rb>Bi					
	пески	>Ce>Sn>V>Pb=La=Cr>Cu>Nd>Ni>Cs>Mo>Nb>Co>Y>Ag>Cd					
	р. Зун-Тигня						
	Зона влияния намытых	Si>Al>Fe>K>Na>Ca>Mg>Ti>S>F>Mn>P>Ba>W=Zn>Sr>Rb>Zr>Bi					
	техногенных песков	>V=Ce>La>Cr>Pb>Cu>Sn>Ni>Nd>U>Y>Co>Nb=Cs>Cd>Ag>Mo					
	р. Зун-Тигня	-					
	Зона влияния техно-	Si>Al>Fe>K>Na>Ca>Mg>Ti>S>F>Mn>P>Ba>Sr>Zr>Zn>Rb>W>Ce					
	генного ландшафта	>V>La>Bi>Nd>Cr>Cu>Ni>Y>Sn>Pb>Nb=Cs>Co>Mo>Cd>Ag					
	руч. Бом-Горхон						
Техногенный	старое хвостохранили-	Si>Al>Fe>K>Na>Ca>Mg>Ti=S>F>W>Mn>P>Ba>Zn>Rb>Sr>Zr=Bi					
	ще	>Sn>Pb>Ce>V=La>Nd>Cu>Nb=Cs>Cr>Ag=Mo>Cd>Ni>Co>					
	р. Зун-Тигня	· ·					
	действующее хвосто-	Si>Al>Fe=K>Na>Ca>Mg>Ti>S>F>Mn=P>Ba>Sr>Zr>Zn>Rb>W>Ce					
	хранилище р. Бом-	>V>La>Bi>Pb>Cu>Cr>Nd>Ni>Y=Cs>U>Sn>Nb>Co>Cd					
	Горхон						
	старые карьеры	Si>Al>Fe>K>Na>Ca>Mg>Ti>F>P>Mn>Ba>Sr>Zr>Zn>Rb>Ce>V>L					
	T - "T - T	a>Pb>Cu>Nd=Bi>Cr>Nb=Y>Sn=Ni>Co>Cs>Mo>Cd					
	J						

3. Почвы пойменных ландшафтов, сопряженных с лежалыми массивами отходов обогащения руд, характеризуются более высоким содержанием ряда химических элементов, в том числе, потенциально токсичных для биоты, чем почвы ландшафтов, прилегающих к действующим хвостохранилищам сульфидно-вольфрамовых месторождений.

Количество валовой формы некоторых химических элементов, входящих в состав руд, в пойменных ландшафтах Джидинского месторождения, граничащих с техногенными, возрастает относительно фона: меди – в 2,4-9,6 раз; молибдена – в 1,3-13,4 раза; олова – в 1,1-2,5 раза; кадмия – в 6,4-13,4 раза; цинка – в 15,1-45,4 раз; свинца – в 1,9-314,8 раз (рисунок 4).

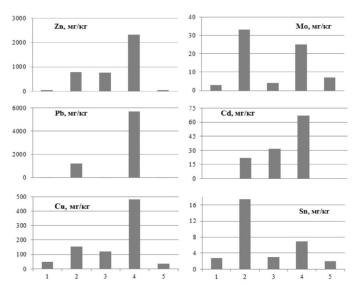


Рисунок 4 - Содержание валовой формы химических элементов в 0-20-см слое почв ландшафтов Джидинского месторождения (n=3): 1 — фон, 2 — бывшее намывное хвостохранилище, 3 — пойма р. Модонкуль, 4 — пойма руч. Барун-Нарын, 5 — пойма руч. Зун-Нарын.

В грунтах техногенных ландшафтов старых лежалых хвостохранилищ Бом-Горхонского месторождения по долине р. ЗунТигня количество валовой формы химических элементов относительно фона выше для фтора – в 3 раза; цинка – в 4,4 раза; олова – в 6,6 раз;

меди — в 2,4 раза; кадмия — в 1,6 раза; свинца — в 1,8 раза; вольфрама — в 57 раз (рисунок 4). Меньшее влияние на пойменный ландшафт руч. Бом-Горхон оказывает действующее хвостохранилище: отмечается повышение относительно фона содержания фтора — в 1,3 раза; цинка — 1,4 раза; олова — в 1,7 раз; меди — в 2,2 раза и вольфрама — в 5,7 раз (рисунок 5).

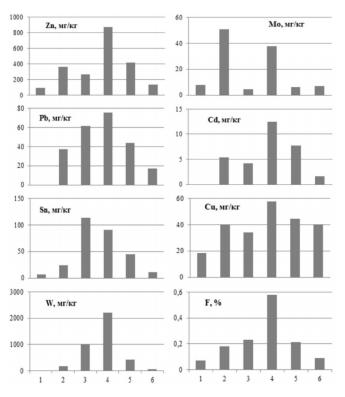


Рисунок 5 - Содержание валовой формы химических элементов в 0-20-см слое почв ландшафтов Бом-Горхонского месторождения (n=3-5): 1 — фон, 2 —карьер, 3 — бывшее хвостохранилище (Зун-Тигня), 4 — хвостохранилище (Бом-Горхон), 5 —пойма руч. Зун-Тигня, 6 — пойма руч. Бом-Горхон.

4. Установлено, что применение отходов горно-обогатительного производства в качестве нетрадиционного удобрения в дозах от Мо_{0,05} до Мо_{10,0} позволяет получить зеленую массу гороха с экологически безопасным уровнем (значительно уступающим максимально допустимому уровню (МДУ) накопления тяжелых металлов.

Проведены агрохимические исследования с использованием отходов переработки руд Джидинского вольфрамово-молибденового комбината. В качестве объектов были взяты техногенные пески дельтовой залежи реки Модонкуль, сформированные при аварийных прорывах дамбы хвостохранилища, и рудничные воды штольни Западная.

В материале залежи техногенных песков значения концентраций веществ составляют, г/т -Cu(170), Zn (83), Pb (200), Co(17), Ni(57), Mo (190).

Уровни накопления токсичных элементов в системе «почва-растение» изучали в вегетационно-полевых условиях на каштановых почвах с использованием возрастающих доз техногенных песков (мг/сосуд в пересчете на содержание Мо) по следующей схеме: I - контроль; II - 0,05; III - 0,5; IV – 1,0;V – 5,0;VI– 10,0. В вегетационных сосудах емкостью 8 кг, с 6-кратной повторностью высаживали семена опытной культуры гороха сорт Сахарный. Все посадки проводили на фоне $N_{1,0}P_{1,0}K_{1,0}$. Сбор растительных образцов осуществляли по окончании вегетационного периода через 89 дней. Содержание тяжелых металлов определяли в сухом веществе зеленой массы гороха методом ICPMS.

Полученные результаты (таблица 3) свидетельствуют, что уровень накопления тяжелых металлов в надземной части зеленой массы гороха оказался ниже максимально допустимого уровня (МДУ). В целом, же при применении возрастающих доз техногенных песков увеличивается содержание Мо в 1,01-1,56 раз, Zn-1,07-1,60 раз, Pb-2,14-2,26 раз, Sn-1,22-1,33 раза, W-1,14-1,44 раза (табл. 3); максимальные значения были отмечены в вариантах опыта при внесении в почву отходов горно-обогатительного производства в дозах Mo_1 и Mo_5 . Количество Cu, Rb, Sr, Y, Ba, Fe, Co, Ni, Br и Nb, по сравнению с фоновым вариантом, либо незначительно снижается, либо находится на уровне фонового. Исключение составляет вариант с использованием техногенных песков в дозе $Mo_{0,5}$, где наблюдается заметное уменьшение таких элементов, как Br, Rb, Sr, Y и Ba (таблица 3).

Таблица - 3 Влияние техногенных песков на среднее содержание химических элементов в надземной части зеленой массы гороха, мг/кг воздушно-сухой массы, n = 3

Вариант	Fe,%	Mo	Zn	Cu	Со	Ni	Pb	Sn	W	Br	Rb	Sr	Y	Ba	Nb
фон	0,07	0,87	11,39	4,61	0,56	0,45	н/о	0,09	н/о	1,71	6,99	139,8	1,43	66,1	0,26
фон + Мо _{0.05}	0,05	0,88	12,17	4,61	0,56	0,52	н/о	0,09	0,57	1,28	4,98	128,2	1,00	45,4	0,10
фон + Мо _{0.5}	0,05	0,94	14,30	4,57	0,58	0,49	н/о	0,09	0,60	1,84	4,76	126,7	1,00	39,5	0,12
фон + Мо _{1,0}	0,05	1,06	16,85	4,49	0,60	0,49	н/о	0,11	0,62	0,81	3,24	109,5	0,88	36,5	0,10
фон + Мо _{5,0}	0,05	1,25	17,66	4,52	0,59	0,48	1,07	0,12	0,68	1,11	3,41	123,8	1,19	38,9	0,12
фон + Мо _{10,0}	0,06	1,36	18,25	4,42	0,57	0,45	1,13	0,11	0,72	1,07	3,68	140,2	1,38	40,7	0,10
A	0,1	2,0	50,0	30,0	1,0	3,0	5,0	-	-	-	-	-	-	-	-
В	0,0018- 0,1	0,3- 2,3*	12-47*	1,1- 33,1*	0,03- 0,57*	0,13- 2,7*	0,36- 8,0*	0,04- 1,9	0,01- 0,15	2,1- 52	20-70	45-662*	0,01- 3,5	1,5- 160	0,02- 1,1

Примечание: н/о – не обнаружено, прочерк – нет данных, * - в травах и бобовых культурах, А - МДУ в кормах для с/х животных (Тяжелые..., 1997), В - Пределы колебаний средних содержаний в растениях мира по (Kabata-Pendias, 2011).

По величине показателя суммарного загрязнения (Рисунок 6) зеленой массы гороха химическими элементами, исследованные дозы отходов горно-обогатительного производства образуют следующий ряд, ранжированный в порядке убывания «загрязняющих» свойств (в скобках – значение показателя Zc): ОГОП5 (4,10) \rightarrow ОГОП4 (3,94) \rightarrow ОГОП3 (2,32) \rightarrow ОГОП2 (1,75) \rightarrow ОГОП1 (1,38). По сравнению с фоновым вариантом, зеленая масса гороха в варианте с использованием ОГОП в дозах Мо5,0 и Мо10,0, относится к среднезагрязненным растениям (Zc – 3-10); при внесении в почву ОГОП в дозах Мо0,05, Мо0,5 и Мо1,0 – к слабозагрязненным (Zc<3).

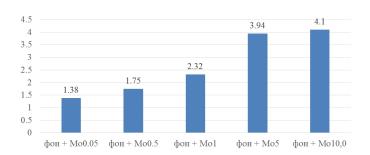


Рисунок 6 - Влияние техногенных песков на показатель суммарного загрязнения зеленой массы гороха химическими элементами

Заключение

Установлено, что нейтрализация кислых поровых вод приводит к резкому ограничению миграционной способности многих химических элементов в толще хранилищ отходов горнообогатительных комбинатов. На основании экспериментальных данных оценена способность к связыванию, под воздействием добавок реагентов обладающих нейтрализующими, адсорбирующими свойствами, в трудно растворимые соединения истинно-растворенных форм Cu,Zn, Pb, Cd и др. химических элементов, находящихся в поровых водах хвостохранилищ Джидинского и Бом-Горхонского горно-обогатительных комбинатов. Получены экспериментальные данные по накоплению токсичных элементов в сельскохозяйственных культурах.

Список использованных источников

- 1 Тяжелые металлы в системе почва растение удобрение. Под ред. М.М. Овчаренко. М.: Пролетарский светоч, 1997. 290 с.
- 2 Kabata-Pendias, 2011 *Kabata-Pendias A*. Trace Elements in Soils and Plants. CRC Press, Taylor and Francis Group, Boca Raton, London, New York, 2011. 505 p.

Приложение А. Публикации по проекту за 2014 год.

- 1. Хажеева З.И. Ресурсы и химический состав вод, взвешенных веществ и донных отложений рек бассейна Селенги. Улан-Удэ: Изд-во БНЦ СО РАН, 2014. 376 с. 500 экз.
- 2. Plyusnin A.M., Zhambalova D.I. Effect of Land Reclamation on the Ecological State of Surface and Subsurface Water in Ust'-Selenga Depression // Water Resources, 2014, Vol. 41, №7, P. 839-843

http://admin-apps.webofknowledge.com/JCR/JCR?RQ=LIST SUMMARY JOURNAL

3. Аюшеева О.Г., Зонхоева Э.Л., Санжанова С.С., Ревенский В.А., Цыбенов Ю.Б.. Влияние внесения селенсодержащего цеолитового микроудобрения на технологическое качество зерна яровой мягкой пшеницы. Агрохимия, 2014, № 11, С.46-51.

http://elibrary.ru/item.asp?id=22498763

4. Дорошкевич С.Г., Бардамова Б.В. Влияние отходов горно-обогатительного производства на плодородие каштановой почвы // Агрохимия, № 9, 2014. С. 23-29.

http://elibrary.ru/item.asp?id=21987377

5. Еремин О.В., Эпова Е.С., Юргенсон Г.А., Смирнова О.К. Прогноз геоэкологических последствий разработки месторождения вольфрама Бом-Горхон (Забайкалье) // Химия в интересах устойчивого развития. Т. 22, № 2, 2014. С. 125-131.

http://elibrary.ru/item.asp?id=21952346

6. Зонхоева Э.Л., Санжанова С.С., Дампилова Б.В. Создание искусственных геохимических барьеров на основе природных материалов для очистки сточных вод Джидинского вольфрамово-молибденового комбината // Вестник ВСГУТУ, 2014. №3. С. 28-34

http://elibrary.ru/item.asp?id=21763910

7. Птицын А.Б., Гребенщикова В.И., Замана Л.И., Итыгилова М.Ц., Матюгина Е.Б., Смирнова О.К., Юргенсон Г.А. Подвижность химических элементов в водных и наземных экосистемах // Вестник ЗабГУ, № 8, 2014. С. 23-32.

http://elibrary.ru/item.asp?id=22024776

8. Ревенский В.А., Зонхоева Э.Л., Цыбенов Ю.Б., Андреева Д.Б., Чимитдоржиева Г.Д., Санжанова С.С. Применение селенсодержащего цеолитового туфа и гуминовых препаратов для обогащения селеном зерна яровой пшеницы // Агрохимия, 2014, №9. С. 67-71.

http://elibrary.ru/item.asp?id=21987382

9. Украинцев, А.В., Плюснин, А.М. Изменение химического состава снежного покрова под влиянием крупных лесных пожаров // Комплексные проблемы техносферной безопасности: Материалы Междунар. науч.-практ. конф. / ФГБОУ ВПО «Воронежский государственный технический университет». – Воронеж, 2014. – Ч.V. – С. 187-190.

http://elibrary.ru/item.asp?id=22692822

10. Гармаева С.З., Плюснин А.М. Геохимия природных газов озёр и термальных источников Баргузинской котловины // Комплексные проблемы техносферной безопасности: Материалы Междунар. науч.-практ. конф. / ФГБОУ ВПО «Воронежский государственный технический университет». – Воронеж, 2014. – Ч.IV. – С.83-86.

http://elibrary.ru/item.asp?id=22692528

11. Украинцев, А.В., Плюснин, А.М. География и причины возникновения лесных пожаров в Заиграевском районе республики Бурятия в 2010-2012 гг.// Актуальные проблемы лесного комплекса: Сборник научных трудов / БГИТА. – Брянск, 2014. – Вып. 39. – С. 36-39.

http://elibrary.ru/item.asp?id=22530670

- 12. Зонхоева Э.Л., Санжанова С.С. Применение природных материалов в механических фильтрах очистки воды // V Всероссийский симпозиум «Минералогия и геохимия ландшафтов горнорудных территорий» и XII Всероссийские чтения памяти академика А.Е. Ферсмана по проблемам: «Рациональное природопользование» и «Современное минералообразование», 10 12 декабря 2014 г. / ИПРЭК СО РАН. Чита, 2014, с. 126-130.
- 13. Смирнова О.К. К минералогии зоны окисления Бом-Горхонского месторождения // V Всероссийский симпозиум «Минералогия и геохимия ландшафтов горнорудных территорий» и XII Всероссийские чтения памяти академика А.Е. Ферсмана по проблемам: «Рациональное природопользование» и «Современное минералообразование», 10 12 декабря 2014 г. / ИПРЭК СО РАН. Чита, 2014, 182-188.
- 14. Дорошкевич С.Г., Смирнова О.К. Микробиологическая активность почв в зоне влияния лежалых отходов обогащения руд сульфидно-вольфрамового месторождения // V Всероссийский симпозиум «Минералогия и геохимия ландшафтов горнорудных территорий» и XII Всероссийские чтения памяти академика А.Е. Ферсмана по проблемам: «Рациональное природопользование» и «Современное минералообразование», 10 12 декабря 2014 г. / ИПРЭК СО РАН. Чита, 2014, с. 84-88.
- 15. Плюснин А.М., Жамбалова Д.И., Дабаева В.В. Миграция токсичных элементов в толще намывного хвостохранилища Джидинского ГОКа. // V Всероссийский симпозиум «Минералогия и геохимия ландшафтов горнорудных территорий» и XII Всероссийские чтения

памяти академика А.Е. Ферсмана по проблемам: «Рациональное природопользование» и «Современное минералообразование», 10 - 12 декабря 2014 г. / ИПРЭК СО РАН. — Чита, 2014. ИПРЭК СО РАН, с. 54-60.