the
numerical thermodynamic model of ore-bearing PZ2-3
–granitoids
of vitim plateau
Vasiliev V.I., Khrustaljov V.K.
Geological
Institute SB RAS,
Ulan-Ude, Russia, vasil@gin.bscnet.ru,
vkhrustalev@yandex.ru
The attempt was undertaken to examine the ore-bearing of
PZ2-3–granitoids
from the position of hydrothermal granite- and ore-formation. In the
light of the put problem, basing on author’s software with
using of program complex «Selektor», the numerical
thermodynamic model for three theoretical scenarios of evolution of
hypogene ore-bearing solution was elaborated and calculated. It was
presumed that primitive ore-bearing solution firstly reacts to
PZ1–granitoids,
and then gets to surrounding rocks of magmatic or sedimentary
composition according to the scenario. During the calculations we use
the flow-reactor method for group of mobile phases «aqueous
solution + gas» (Fig. 1).
P-T
conditions of zones for orogenic situation were computed using
author’s software (Vasiliev,
Zhatnuev, 2007) in such a way as to the initial hypogene
(trans-magmatic) solution has the temperature close to granite
eutectic. The initial composition of ore-bearing trans-magmatic
solution was calculated from the equilibrium with rare elements of
unaltered enclosing effusive rocks (Ti, Mn, Cr, Ni, Co, V, Mo, Cu,
Pb, Zn, Sn, Zr, Be, Y, Sr, Ba) and ore-bearing granitoids (Li, Rb, W,
B, F, U) (Table 1).
Table
1.
The calculated composition of ore-bearing solution
Components
|
Content, mol/kg
of
solution
|
Li
|
0,018729290
|
Be
|
0,000035840
|
B
|
0,003607437
|
F
|
0,044740610
|
Ti
|
0,009695071
|
V
|
0,000129443
|
Cr
|
0,000072159
|
Mn
|
0,004635767
|
Ni
|
0,000037110
|
Co
|
0,000020192
|
Cu
|
0,000026595
|
Zn
|
0,000114268
|
Rb
|
0,002457066
|
Sr
|
0,000461843
|
Y
|
0,000042652
|
Zr
|
0,000368324
|
Mo
|
0,000001376
|
Sn
|
0,000003044
|
Ba
|
0,000604251
|
W
|
0,000027196
|
Pb
|
0,000013021
|
U
|
0,000043272
|
H2O
|
55,389069220
|
|
Table
2.
The initial compositions of PZ1–granitoids
and
enclosing
rocks, mass. %
Oxides
|
Granitoids
PZ1
|
Effusive
rocks
|
Sediments
|
SiO2
|
69,53
|
56,57
|
61,67
|
TiO2
|
0,36
|
0,93
|
0,93
|
Al2O3
|
14,95
|
15,33
|
16,23
|
Fe2O3
|
1,26
|
2,60
|
1,72
|
FeO
|
1,68
|
5,00
|
5,41
|
MnO
|
0,05
|
0,18
|
0,12
|
MgO
|
0,88
|
3,80
|
3,78
|
CaO
|
2,21
|
7,38
|
3,90
|
Na2O
|
3,74
|
2,50
|
1,06
|
K2O
|
4,47
|
1,97
|
2,31
|
H2O
|
-
|
0,02
|
0,08
|
P2O5
|
0,15
|
0,19
|
0,16
|
SO3
|
-
|
0,04
|
0,25
|
Σ
|
99,28
|
96,51
|
97,63
|
|
The given elements together with the elements of oxides of the
silicate analysis constitute the set of the model independent
components. The
averaged initial zones compositions, which are collected from three
primary geological reports and a monograph (Khrustaljov, 1990), are
shown at Table 2.
The quantity
of model depended components was only limited by databases of
«Selektor»: 109 condensed
phases (b_Berman, s_Janaf, s_Sprons98, s_Yokokawa databases), 83
components of aqueous solution (a_Sprons98 database) and 12
components of gas phase (g_Reid database).
The
calculation of model has shown the principal possibility of forming
of chemical and mineral composition close to granitoids, with
increased concentrations of rare elements as a result of solution
evolution according to III scenario, and without such concentration –
according to I scenario. The obtained data successfully correlate
with the natural compositions of ore-bearing and non-ore-bearing
PZ2-3–granitoids
(Table 3).
Thus, the
advantage of the model consists in mathematically proven principal
possibility of hydrothermal genesis of both ore-bearing and
non-ore-bearing PZ2-3–granitoids
of Vitim plateau according to III and I scenarios correspondingly.
Undoubtedly,
the imperfection of the conceptual chemical model for all scenarios
is absence of carbon as an independent component; with taking carbon
into account it was possible to model the genesis of carbonaceous
shales which are spatially associated with granitoids. Unfortunately,
necessary data relating to carbon contents are absent in geological
reports and accessible literature.
Table 3.
The comparison between averaged natural and calculated compositions
of ore-bearing аnd
non-ore-bearing
PZ2-3
granitoids.
Components
|
Non-ore-bearing, mass. %
|
Ore-bearing,
mass.
%
|
Natural
|
Calculated
(I scenario)
|
Natural
|
Calculated
(III сценарий)
|
SiO2
|
74,90
|
72,71
|
75,31
|
75,47
|
TiO2
|
0,17
|
0,57
|
0,17
|
0,20
|
Al2O3
|
12,84
|
13,03
|
12,59
|
12,62
|
Fe2O3
|
1,07
|
1,17
|
1,09
|
1,17
|
FeO
|
0,77
|
1,23
|
0,93
|
1,02
|
MnO
|
0,05
|
0,59
|
0,04
|
0,12
|
MgO
|
0,35
|
0,22
|
0,47
|
0,48
|
CaO
|
0,65
|
1,03
|
0,64
|
0,67
|
Na2O
|
3,85
|
3,80
|
3,42
|
3,45
|
K2O
|
4,78
|
4,95
|
4,42
|
4,49
|
P2O5
|
0,03
|
0,58
|
0,04
|
0,10
|
Li
|
0,00340
|
0,00246
|
0,01300
|
0,01386
|
Rb
|
0,01800
|
0,01792
|
0,02100
|
0,02126
|
Pb
|
0,00230
|
0,00147
|
0,00290
|
0,00364
|
Zn
|
0,00470
|
0,00463
|
0,00640
|
0,00691
|
Sn
|
0,00032
|
0,00019
|
0,00090
|
0,00140
|
W
|
0,00016
|
0,00029
|
0,00050
|
0,00124
|
Mo
|
0,00011
|
0,00013
|
0,00030
|
0,00122
|
Be
|
0,00036
|
0,00028
|
0,00063
|
0,00145
|
B
|
0,00130
|
0,00050
|
0,00390
|
0,00480
|
F
|
0,03000
|
0,02912
|
0,08500
|
0,08599
|
Ba
|
0,03500
|
0,03397
|
0,04000
|
0,04100
|
Sr
|
0,01600
|
0,01527
|
0,01500
|
0,01593
|
U
|
0,00065
|
0,00007
|
0,00103
|
0,00185
|
Note:
the calculated compositions are reduced to 100%. Mean-root-square
error for oxides of silicate analysis ± 0, 00743840, for rare
elements ± 0, 00006188.
References
Khrustaljov V.K. (1990) Geochemistry
and ore content of the Vitim plateau Paleozoic granitoids.
Novosibirsk. Nauka. 135p.
(in Russian)
Vasiliev
V.I., Zhatnuev N.S. (2007) Realization of substance and heat
distribution model in language SI ++ with use of PC “SELECTOR”
// Geochemistry and ore formation of radioactive, precious and rare
metals during endogenic and exogenic processes. Materials of
All-Russian Conference. Vol.2 Ulan-Ude. Izd-vo of BRC SB RAS.
P.119-121. (in Russian)
|