Granites and Earth Evolution.
Prev Up Next

the numerical thermodynamic model of ore-bearing PZ2-3 –granitoids of vitim plateau

Vasiliev V.I., Khrustaljov V.K.

Geological Institute SB RAS, Ulan-Ude, Russia, vasil@gin.bscnet.ru, vkhrustalev@yandex.ru


The attempt was undertaken to examine the ore-bearing of PZ2-3granitoids from the position of hydrothermal granite- and ore-formation. In the light of the put problem, basing on author’s software with using of program complex «Selektor», the numerical thermodynamic model for three theoretical scenarios of evolution of hypogene ore-bearing solution was elaborated and calculated. It was presumed that primitive ore-bearing solution firstly reacts to PZ1–granitoids, and then gets to surrounding rocks of magmatic or sedimentary composition according to the scenario. During the calculations we use the flow-reactor method for group of mobile phases «aqueous solution + gas» (Fig. 1).

P-T conditions of zones for orogenic situation were computed using author’s software (Vasiliev, Zhatnuev, 2007) in such a way as to the initial hypogene (trans-magmatic) solution has the temperature close to granite eutectic. The initial composition of ore-bearing trans-magmatic solution was calculated from the equilibrium with rare elements of unaltered enclosing effusive rocks (Ti, Mn, Cr, Ni, Co, V, Mo, Cu, Pb, Zn, Sn, Zr, Be, Y, Sr, Ba) and ore-bearing granitoids (Li, Rb, W, B, F, U) (Table 1).

Table 1. The calculated composition of ore-bearing solution


Components

Content, mol/kg

of solution

Li

0,018729290

Be

0,000035840

B

0,003607437

F

0,044740610

Ti

0,009695071

V

0,000129443

Cr

0,000072159

Mn

0,004635767

Ni

0,000037110

Co

0,000020192

Cu

0,000026595

Zn

0,000114268

Rb

0,002457066

Sr

0,000461843

Y

0,000042652

Zr

0,000368324

Mo

0,000001376

Sn

0,000003044

Ba

0,000604251

W

0,000027196

Pb

0,000013021

U

0,000043272

H2O

55,389069220


Table 2. The initial compositions of PZ1–granitoids and

enclosing rocks, mass. %


Oxides

Granitoids PZ1

Effusive rocks

Sediments

SiO2

69,53

56,57

61,67

TiO2

0,36

0,93

0,93

Al2O3

14,95

15,33

16,23

Fe2O3

1,26

2,60

1,72

FeO

1,68

5,00

5,41

MnO

0,05

0,18

0,12

MgO

0,88

3,80

3,78

CaO

2,21

7,38

3,90

Na2O

3,74

2,50

1,06

K2O

4,47

1,97

2,31

H2O

-

0,02

0,08

P2O5

0,15

0,19

0,16

SO3

-

0,04

0,25

Σ

99,28

96,51

97,63




The given elements together with the elements of oxides of the silicate analysis constitute the set of the model independent components. The averaged initial zones compositions, which are collected from three primary geological reports and a monograph (Khrustaljov, 1990), are shown at Table 2.

The quantity of model depended components was only limited by databases of «Selektor»: 109 condensed phases (b_Berman, s_Janaf, s_Sprons98, s_Yokokawa databases), 83 components of aqueous solution (a_Sprons98 database) and 12 components of gas phase (g_Reid database).

The calculation of model has shown the principal possibility of forming of chemical and mineral composition close to granitoids, with increased concentrations of rare elements as a result of solution evolution according to III scenario, and without such concentration – according to I scenario. The obtained data successfully correlate with the natural compositions of ore-bearing and non-ore-bearing PZ2-3–granitoids (Table 3).

Thus, the advantage of the model consists in mathematically proven principal possibility of hydrothermal genesis of both ore-bearing and non-ore-bearing PZ2-3–granitoids of Vitim plateau according to III and I scenarios correspondingly.

Undoubtedly, the imperfection of the conceptual chemical model for all scenarios is absence of carbon as an independent component; with taking carbon into account it was possible to model the genesis of carbonaceous shales which are spatially associated with granitoids. Unfortunately, necessary data relating to carbon contents are absent in geological reports and accessible literature.

Table 3. The comparison between averaged natural and calculated compositions of ore-bearing аnd

non-ore-bearing PZ2-3 granitoids.

Components

Non-ore-bearing, mass. %

Ore-bearing, mass. %

Natural

Calculated (I scenario)

Natural

Calculated (III сценарий)

SiO2

74,90

72,71

75,31

75,47

TiO2

0,17

0,57

0,17

0,20

Al2O3

12,84

13,03

12,59

12,62

Fe2O3

1,07

1,17

1,09

1,17

FeO

0,77

1,23

0,93

1,02

MnO

0,05

0,59

0,04

0,12

MgO

0,35

0,22

0,47

0,48

CaO

0,65

1,03

0,64

0,67

Na2O

3,85

3,80

3,42

3,45

K2O

4,78

4,95

4,42

4,49

P2O5

0,03

0,58

0,04

0,10

Li

0,00340

0,00246

0,01300

0,01386

Rb

0,01800

0,01792

0,02100

0,02126

Pb

0,00230

0,00147

0,00290

0,00364

Zn

0,00470

0,00463

0,00640

0,00691

Sn

0,00032

0,00019

0,00090

0,00140

W

0,00016

0,00029

0,00050

0,00124

Mo

0,00011

0,00013

0,00030

0,00122

Be

0,00036

0,00028

0,00063

0,00145

B

0,00130

0,00050

0,00390

0,00480

F

0,03000

0,02912

0,08500

0,08599

Ba

0,03500

0,03397

0,04000

0,04100

Sr

0,01600

0,01527

0,01500

0,01593

U

0,00065

0,00007

0,00103

0,00185

Note: the calculated compositions are reduced to 100%. Mean-root-square error for oxides of silicate analysis ± 0, 00743840, for rare elements ± 0, 00006188.


References

Khrustaljov V.K. (1990) Geochemistry and ore content of the Vitim plateau Paleozoic granitoids. Novosibirsk. Nauka. 135p. (in Russian)

Vasiliev V.I., Zhatnuev N.S. (2007) Realization of substance and heat distribution model in language SI ++ with use of PC “SELECTOR” // Geochemistry and ore formation of radioactive, precious and rare metals during endogenic and exogenic processes. Materials of All-Russian Conference. Vol.2 Ulan-Ude. Izd-vo of BRC SB RAS. P.119-121. (in Russian)